Semi-supervised Clustering using Combinatorial MRFs
نویسندگان
چکیده
A combinatorial random variable is a discrete random variable defined over a combinatorial set (e.g., a power set of a given set). In this paper we introduce combinatorial Markov random fields (Comrafs), which are Markov random fields where some of the nodes are combinatorial random variables. We argue that Comrafs are powerful models for unsupervised learning by showing their relationship with two existing models. We then present a Comraf model for semi-supervised clustering that demonstrates superior results in comparison to an existing semi-supervised scheme (constrained optimization).
منابع مشابه
A Combinatorial View of Graph Laplacians
Discussions about different graph Laplacians—mainly the normalized and unnormalized versions of graph Laplacian—have been ardent with respect to various methods of clustering and graph based semi-supervised learning. Previous research in the graph Laplacians, from a continuous perspective, investigated the convergence properties of the Laplacian operators on Riemannian Manifolds. In this paper,...
متن کاملCombinatorial Markov Random Fields
A combinatorial random variable is a discrete random variable defined over a combinatorial set (e.g., a power set of a given set). In this paper we introduce combinatorial Markov random fields (Comrafs), which are Markov random fields where some of the nodes are combinatorial random variables. We argue that Comrafs are powerful models for unsupervised and semi-supervised learning. We put Comraf...
متن کاملWised Semi-Supervised Cluster Ensemble Selection: A New Framework for Selecting and Combing Multiple Partitions Based on Prior knowledge
The Wisdom of Crowds, an innovative theory described in social science, claims that the aggregate decisions made by a group will often be better than those of its individual members if the four fundamental criteria of this theory are satisfied. This theory used for in clustering problems. Previous researches showed that this theory can significantly increase the stability and performance of...
متن کاملWised Semi-Supervised Cluster Ensemble Selection: A New Framework for Selecting and Combing Multiple Partitions Based on Prior knowledge
The Wisdom of Crowds, an innovative theory described in social science, claims that the aggregate decisions made by a group will often be better than those of its individual members if the four fundamental criteria of this theory are satisfied. This theory used for in clustering problems. Previous researches showed that this theory can significantly increase the stability and performance of...
متن کاملExtracting Prior Knowledge from Data Distribution to Migrate from Blind to Semi-Supervised Clustering
Although many studies have been conducted to improve the clustering efficiency, most of the state-of-art schemes suffer from the lack of robustness and stability. This paper is aimed at proposing an efficient approach to elicit prior knowledge in terms of must-link and cannot-link from the estimated distribution of raw data in order to convert a blind clustering problem into a semi-supervised o...
متن کامل